|
|
# Form of the functional
|
|
|
W-SLDA codes minimize functional of the generic form:
|
|
|
```math
|
|
|
E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r-\sum_{\sigma}\int\left(\mu_{\sigma}-V_{\sigma}^{\textrm{(ext)}}(r)\right)n_{\sigma}(r)\,d^3r\\-\frac{1}{2}\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r
|
|
|
E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r-\sum_{\sigma}\int\left(\mu_{\sigma}-V_{\sigma}^{\textrm{(ext)}}(r)\right)n_{\sigma}(r)\,d^3r\\-\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r
|
|
|
```
|
|
|
where:
|
|
|
* $`\mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)`$ is energy density functional which defines the physical system,
|
... | ... | |