Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • External potentials

Last edited by Gabriel Wlazłowski Sep 02, 2022
Page history

External potentials

Form of the functional

W-SLDA codes minimize functional of the generic form:

E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r-\sum_{\sigma}\int\left(\mu_{\sigma}-V_{\sigma}^{\textrm{(ext)}}(r)\right)n_{\sigma}(r)\,d^3r\\-\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r

where:

  • \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots) is energy density functional which defines the physical system,
  • V_{\sigma}^{\textrm{(ext)}}(r) is spin dependent external potential, and \mu_{\sigma} are chemical potentials (Lagrange multipliers) for constraining particle number.
  • \Delta^{\textrm{(ext)}}(r) is external pairing potential,
  • \vec{v}_{\sigma}^{\textrm{(ext)}}(r) is external velocity field.

W-SLDA toolkit provides flexible framework that allows for custom definition of all these terms. User must provide body of following functions contained in file: problem-definition.h. Each function can be parametrized by User defined parameters.

Definition of the external potential V_{\sigma}^{\textrm{(ext)}}(r)

/** 
 * EXTERNAL POTENTIAL V_ext
 * @param ix x-coordinate from range [0,NX), to convert to Cartesian use: x = DX*(ix-NX/2)
 * @param iy y-coordinate from range [0,NY), to convert to Cartesian use: y = DY*(iy-NY/2),
 *           NOTE: in case of 1d code iy=0
 * @param iz z-coordinate from range [0,NZ), to convert to Cartesian use: z = DZ*(iz-NZ/2)
 *           NOTE: in case of 1d and 2d codes iz=0
 * @param it iteration number
 * @param spin spin indicator, value from set {SPINA,SPINB}
 * @param params array of input parameters, before call of this routine the params array is processed by process_params() routine
 * @param extra_data_size size of extra_data in bytes, if extra_data size=0 the optional data is not uploaded
 * @param extra_data optional set of data uploaded by load_extra_data()
 * @return value of the external potential V_spin(x,y,z)
 * */
double v_ext(int ix, int iy, int iz, int it, int spin, double *params, size_t extra_data_size, void *extra_data)
{
    // ADD HERE FORMULA FOR V_ext(r)
    double V_ext = 0.0;

    return V_ext; 
}

Definition of the external pairing potential \Delta^{\textrm{(ext)}}(r)

/** 
 * EXTERNAL PAIRING POTENTIAL Delta_ext
 * @param ix x-coordinate from range [0,NX), to convert to Cartesian use: x = DX*(ix-NX/2)
 * @param iy y-coordinate from range [0,NY), to convert to Cartesian use: y = DY*(iy-NY/2)
 *           NOTE: in case of 1d code iy=0
 * @param iz z-coordinate from range [0,NZ), to convert to Cartesian use: z = DZ*(iz-NZ/2)
 *           NOTE: in case of 1d and 2d codes iz=0
 * @param it iteration number
 * @param delta - value of delta computed self-consistently for given iteration it. 
 * @param params array of input parameters, before call of this routine the params array is processed by process_params() routine
 * @param extra_data_size size of extra_data in bytes, if extra_data size=0 the optional data is not uploaded
 * @param extra_data optional set of data uploaded by load_extra_data()
 * @return value of external pairing potential Delta_{ext}(x,y,z)
 * */
double complex delta_ext(int ix, int iy, int iz, int it, double complex delta, double *params, size_t extra_data_size, void *extra_data)
{
    // ADD HERE FORMULA FOR Delta_ext(r)
    double complex D_ext = 0.0 + I*0.0;

    return D_ext; 
}

Note: Due to technical reasons this function differs with respect to return type between st-wslda and td-wslda codes. Namely:

  • st-wslda: return type must be C99 double complex
  • td-wslda: return type must be compatible with CUDA Complex

Definition of the external velocity field \vec{v}_{\sigma}^{\textrm{(ext)}}(r)

/** 
 * EXTERNAL VELOCITY FIELD vec[v]_ext
 * @param ix x-coordinate from range [0,NX), to convert to Cartesian use: x = DX*(ix-NX/2)
 * @param iy y-coordinate from range [0,NY), to convert to Cartesian use: y = DY*(iy-NY/2)
 *           NOTE: in case of 1d code iy=0
 * @param iz z-coordinate from range [0,NZ), to convert to Cartesian use: z = DZ*(iz-NZ/2)
 *           NOTE: in case of 1d and 2d codes iz=0
 * @param it iteration number
 * @param spin spin indicator, value from set {SPINA,SPINB}
 * @param coordinate - Cartesian coordinate of the external velocity vector that should be computed, value from set {XAXIS, YAXIS, ZAXIS}
 *                     NOTE: for 1d code only XAXIS is requested, for 2d code XAXIS and YAXIS are requested.
 * @param params array of input parameters, before call of this routine the params array is processed by process_params() routine
 * @param extra_data_size size of extra_data in bytes, if extra_data size=0 the optional data is not uploaded
 * @param extra_data optional set of data uploaded by load_extra_data()
 * @return value of the external velocity vector v_ext(x,y,z)
 * */
double velocity_ext(int ix, int iy, int iz, int it, int spin, int coordinate, double *params, size_t extra_data_size, void *extra_data)
{
    // ADD HERE FORMULAS FOR vec{v}_ext=(vx, vy, vz)
    double v_ext;
    if(coordinate==XAXIS) v_ext=0.0;
    if(coordinate==YAXIS) v_ext=0.0;
    if(coordinate==ZAXIS) v_ext=0.0;

    return v_ext; 
}
Clone repository

Content of Documentation
Official webpage
W-BSK Toolkit