Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Configuring GPU machine

Last edited by Gabriel Wlazłowski Dec 21, 2022
Page history

Configuring GPU machine

Introduction

td codes require machines equipped with GPUs. The standard scenario assumes that the number of parallel MPI processes equals the number of GPUs. The user must provide the correct prescription that uniquely assigns GPU devices to MPI processes. This step depends on the architecture of the target machine. To set up the correct profile of the target machine, you need to modify machine.h. To printout on screen applied mapping of MPI processes to GPUs use:

/**
 * Activate this flag in order to print to stdout
 * applied mapping mpi-process <==> device-id.
 * */
#define PRINT_GPU_DISTRIBUTION

Machine with uniformly distributed GPU cards of the same type

It is the most common case. In such case, it is sufficient to use default settings by commenting out:

/**
 * Activate this flag if target machine has non-standard distribution of GPUs. 
 * In such case you need to provide body of function `assign_deviceid_to_mpi_process`.
 * If this flag is commented-out it is assumed that code is running on a machine 
 * with uniformly distributed GPU cards across the nodes, 
 * and each node has `gpuspernode` (input file parameter) cards.
 * */
// #define CUSTOM_GPU_DISTRIBUTION

and in the input file setting number of GPUs that each node is equipped with:

gpuspernode             1        # number of GPUs per node (resource set), default=1

You need to execute the code with the number of MPI processes equal number of GPUs. For example, if each node is equipped with one GPU and you plan to run the code on 512 nodes, you should call it as (schematic notation):

mpirun -n 512 --ntasks-per-node=1 ./td-wslda-3d input.txt

Machine with non-uniform distribution of GPUs

In such a case, you need to define GPUs distribution. For example, consider machine that has 7 nodes, and cards are distributed as follow (the content of file nodes.txt):

node2061.grid4cern.if.pw.edu.pl slots=8
node2062.grid4cern.if.pw.edu.pl slots=8
node2063.grid4cern.if.pw.edu.pl slots=4
node2064.grid4cern.if.pw.edu.pl slots=4
node2065.grid4cern.if.pw.edu.pl slots=4
node2066.grid4cern.if.pw.edu.pl slots=4
node2067.grid4cern.if.pw.edu.pl slots=8

GPU distribution is defined as follows:

/**
 * Activate this flag if target machine has non-standard distribution of GPUs. 
 * In such case you need to provide body of function `assign_deviceid_to_mpi_process`.
 * If this flag is commented-out it is assumed that code is running on a machine 
 * with uniformly distributed GPU cards accross the nodes, 
 * and each node has `gpuspernode` (input file paramater) cards.
 * */
#define CUSTOM_GPU_DISTRIBUTION

/**
 * This function is used to assign unique device-id to mpi process.
 * @param comm MPI communicator
 * @return device-id assign to the process extracted by function MPI_Comm_rank(...)
 * DO NOT REMOVE STATEMENT `#if ... BELOW !!!
 * */
#if defined(CUSTOM_GPU_DISTRIBUTION) && defined(TDWSLDA_MAIN)
int assign_deviceid_to_mpi_process(MPI_Comm comm)
{
    int np, ip;
    MPI_Comm_size(comm, &np);
    MPI_Comm_rank(comm, &ip);
    
    // assign here deviceid to process with ip=iam
    int deviceid=0;
    
    if(ip==0) printf("# CUSTOM GPU DISTRIBUTION FOR MACHINE: DWARF\n");
    char processor_name[MPI_MAX_PROCESSOR_NAME];
    int name_len;
    MPI_Get_processor_name(processor_name, &name_len);
    int *ompi_local_rank;
    ompi_local_rank = (int *)malloc(sizeof(int)*np);
    int ompi_ppn=4;
    if(strcmp (processor_name,"node2061.grid4cern.if.pw.edu.pl")==0) ompi_ppn=8;
    if(strcmp (processor_name,"node2062.grid4cern.if.pw.edu.pl")==0) ompi_ppn=8;
    if(strcmp (processor_name,"node2067.grid4cern.if.pw.edu.pl")==0) ompi_ppn=8;
    MPI_Allgather(&ompi_ppn,1,MPI_INT,ompi_local_rank,1,MPI_INT,MPI_COMM_WORLD);
    int ompi_i=0, ompi_j;
    while(ompi_i<np)
    {
        if(ompi_local_rank[ompi_i]==8)
        {
            for(ompi_j=0; ompi_j<8; ompi_j++) ompi_local_rank[ompi_i+ompi_j]=ompi_j;
            ompi_i+=8;
        }
        else
        {
            for(ompi_j=0; ompi_j<4; ompi_j++) ompi_local_rank[ompi_i+ompi_j]=ompi_j;
            ompi_i+=4;
        }
    }

    deviceid=ompi_local_rank[ip];
    free(ompi_local_rank);
    
    return deviceid;
}
#endif
Clone repository

Content of Documentation
Official webpage
W-BSK Toolkit