Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Common failures of time dependent codes

Last edited by Gabriel Wlazłowski May 20, 2021
Page history

Common failures of time dependent codes

cannot execute: gpu_malloc

Example of error:

GPU ERROR: ip[154]: cannot execute: gpu_malloc(NXY*nwfip*2*sizeof(cufftDoubleComplex), (void **)&d_wf_d_dy)
file=`/gs/hs1/hp190063/share/wslda/hpc-engine/cpca.c`, line=602
Error=2
Exiting!

This type error indicates that there is not enough memory to run the code.
Solution: increase the number of GPUs.
Note: you can use td-memory.py to estimate the number of required GPUs for your problem.

Clone repository

Content of Documentation
Official webpage
W-BSK Toolkit