Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • td wslda examples

Last edited by Gabriel Wlazłowski Feb 20, 2024
Page history
This is an old version of this page. You can view the most recent version or browse the history.

td wslda examples

  • Example 1: Time-dependent external potential
    • Step 1: Find the static solution
    • Step 2: Execute time evolution

Example 1: Time-dependent external potential

Target: find a time evolution of the unitary Fermi gas confined in a harmonic trap:

V_{\textrm{ext}}(x,y,z,t) = \frac{m\omega_x^2 x^2}{2} + A(t)\frac{m\omega_y^2 y^2}{2}

where A(t) is a function that smoothly rises from zero to one within a given time interval.

Step 1: Find the static solution

The initial external potential is V_{\textrm{ext}}(x,y,z) = \frac{m\omega_x^2 x^2}{2}, and we can use 1d code.

Code: st-wslda-1d

Settings:

  • trap-1d_predefines.h
  • trap-1d_problem-definition.h
  • trap-1d_logger.h
  • trap-1d_input.txt

Output:

  • trap-1d.stdout

Step 2: Execute time evolution

Code: td-wslda-2d

Settings:

  • trap-2d-alpha0.0_predefines.h
  • trap-2d-alpha0.0_problem-definition.h
  • trap-2d-alpha0.0_logger.h
  • trap-2d-alpha0.0_input.txt

Output:

  • trap-2d-alpha0.0.stdout
  • trap-2d-alpha0.0.wlog

td-snapshots

Energy evolution:

import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt("/home/gabrielw/sshfs/lumi/scratch/quantum_friction/td-ho-gw/trap-2d-alpha0.0.wlog", usecols=(1,4,5))

fig, ax = plt.subplots()
ax.plot(data[:,0], data[:,2], color='red', label=r'energy', lw=3.0)
ax.set(xlabel=r'$t\varepsilon_F$', ylabel=r'$E/E_{ffg}$')
ax2 = ax.twinx()  # instantiate a second axes that shares the same x-axis
ax2.plot(data[:,0], data[:,1], color='blue', label=r'particle number', lw=2.0, ls="--") # plot last frame [-1]
ax2.set(ylabel=r'$N$')
fig.legend(loc="upper left", bbox_to_anchor=(0.3,0.3), bbox_transform=ax.transAxes)
fig.savefig("energy-conservation.png")

energy-conservation

Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages