Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • st wslda examples

st wslda examples · Changes

Page history
Update st wslda examples authored Feb 19, 2024 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Show whitespace changes
Inline Side-by-side
st-wslda-examples.md
View page @ 32c87604
[[_TOC_]] [[_TOC_]]
# Example 1: gas confined in a tube # Example 1: Unitary Fermi Gas is confided in a 1D (smooth) squared well
The solution of cold atomic gas in an external potential of the form of a tube. Gas with is in BCS regime with $`ak_F=-0.9`$. In the calculation, we assumed translation symmetry along z direction and `st-wslda-2d` was used. In the computation, `double` arithmetic is utilized. Target: generate solution in a 1D potential well $`V_{\textrm{ext}}(x,y,z)\rightarrow V_{\textrm{ext}}(x)`$, with bulk density corresponding $`k_F=1`$.
* [predefines.h](uploads/b0f9c475f5dbd44640310b713ecb5ea5/tube_predefines.h)
* [problem-definition.h](uploads/cd9da4754c87bf4eabe4977246ba534b/tube_problem-definition.h) Code: `st-wslda-1d`
* [input.txt](uploads/df292f7036ca8ffd86d4986cb40c1449/tube_input.txt)
* [output](uploads/799f6e104160a09fe4bf542d989cedcf/tube.out) Settings:
* [only-trap_predefines.h](uploads/5122091213e767bee5a89afbc45b7993/only-trap_predefines.h)
The graph below shows density distribution (left) and the absolute value of delta (right) for the converged solution. * [only-trap_problem-definition.h](uploads/5a7357a2d602ec450520392fcdf2e84b/only-trap_problem-definition.h)
* [only-trap_logger.h](uploads/750f361d4a09b1095d357cb3c6841043/only-trap_logger.h)
![example-st-1](uploads/b8a8ec63f10ec99c2573207580e7ad32/example-st-1.png) * [only-trap_input.txt](uploads/f34247597824ab74800e9d3521577fdf/only-trap_input.txt)
# Example 2: vortex solution within BdG Output:
The solution representing a vortex confined in a tube. The conditions are the same as for *Example 1*. To speed up the convergence process we start from the state provided by *Example 1*. In the computation, `double complex` arithmetic is utilized. * [only-trap.stdout](uploads/0aeeac20397398ee3e45ae7dbbf6fcde/only-trap.stdout)
* [predefines.h](uploads/0a1ad93743c8f9544e59338ba8220563/vortex_predefines.h)
* [problem-definition.h](uploads/215195b78623a61bc1f4df47c27e5d7a/vortex_problem-definition.h) Simple plotting script:
* [input.txt](uploads/1e340d91f45dc57900152866a9a956ef/vortex_input.txt) ```python
* [output](uploads/633a07650caee1345b0a1fbdd9513d51/vortex.out) import numpy as np
import matplotlib.pyplot as plt
The graph below shows density distribution (left) and the absolute value of delta (right) for the converged solution. By arrows currents are plotted. from wdata.io import WData, Var
![example-st-2](uploads/f896b92eeaa489872600109615ef066b/example-st-2.png)
data = WData.load("only-trap.wtxt")
# Example 3: mass imbalanced gas in a harmonic trap
This example is motivated by work [arXiv:1909.03424](https://arxiv.org/abs/1909.03424). fig, ax = plt.subplots()
Namely, let us consider gas of: ax.plot(data.xyz[0], data.rho_a[-1]*2, color='red', label=r'density', lw=3.0) # plot last frame [-1]
* component *a*: $`{}^{161}\textrm{Dy}`$, ax.set(xlabel='x', ylabel=r'$n(x)$')
* component *b*: $`{}^{40}\textrm{K}`$, ax2 = ax.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(data.xyz[0], np.angle(data.delta[-1])/np.pi, color='blue', label=r'arg. of phase', lw=2.0, ls="--") # plot last frame [-1]
confined in harmonic trap: ax2.set(ylabel=r'$V_{ext}(x)$')
```math fig.legend(loc="upper left", bbox_to_anchor=(0.3,0.3), bbox_transform=ax.transAxes)
V_{a,b}(x)=\dfrac{m_a \omega_a^2 x^2}{2} fig.savefig("only-trap.png")
```
![only-trap](uploads/545443b201c91c8424b1a075635c5451/only-trap.png)
# Example 2: Soliton in the unitary Fermi gas.
Target: on top of the Example 1 imprint soliton.
Code: `st-wslda-1d`
Settings:
* [soliton-x0_predefines.h](uploads/e3084b524d482bc515621352fadca83c/soliton-x0_predefines.h)
* [soliton-x0_problem-definition.h](uploads/5ad3f678404f2c4514f25c6bd118924b/soliton-x0_problem-definition.h)
* [soliton-x0_logger.h](uploads/d6d215b8ea32b8080f7458f1f9fb3883/soliton-x0_logger.h)
* [soliton-x0_input.txt](uploads/1c6687fb205ee655eabb61e6d8b56a33/soliton-x0_input.txt)
Output:
* [soliton-x0.stdout](uploads/4e94c17ea973b427b4ffd7f990769a49/soliton-x0.stdout)
Simple plotting script:
```python
import numpy as np
import matplotlib.pyplot as plt
from wdata.io import WData, Var
data = WData.load("soliton-x0.wtxt")
fig, ax = plt.subplots()
ax.plot(data.xyz[0], data.rho_a[-1]*2, color='red', label=r'density', lw=3.0) # plot last frame [-1]
ax.set(xlabel='x', ylabel=r'$n(x)$')
ax2 = ax.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(data.xyz[0], np.angle(data.delta[-1])/np.pi, color='blue', label=r'arg. of phase', lw=2.0, ls="--") # plot last frame [-1]
ax2.set(ylabel=r'$Arg[\Delta](x)/\pi$')
fig.legend(loc="upper left", bbox_to_anchor=(0.15,0.3), bbox_transform=ax.transAxes)
fig.savefig("soliton-x0.png")
``` ```
where traping frequencies of both components are different (in the example we use according to [arXiv:1909.03424](https://arxiv.org/abs/1909.03424) $`\omega_a/\omega_b=120/430`$). In addition $`N_{\textrm{Dy}} / N_{\textrm{K}} = 20000/8000`$. In the calculations BdG functional is used, with the scattering length exceeding other length scales (in the example $`a=100`$). In the calculation `st-wslda-1d` was used.
* [predefines.h](uploads/8bed3548acc9dd04a2ccf54a35687ac7/DyK_predefines.h)
* [problem-definition.h](uploads/475df575833b5d4e92acd77b30992930/DyK_problem-definition.h)
* [logger.h](uploads/8ac2b1262a442fa45092727564919f94/DyK_logger.h)
* [input.txt](uploads/287f965385d1da19e7d84f007ec26a0e/DyK_input.txt)
* [DyK.out](uploads/8829e64cb15639be6a1dfb44e55c5314/DyK.out)
The graph below shows density distribution along *x* axis of $`{}^{161}\textrm{Dy}`$ (red) and $`{}^{40}\textrm{K}`$ (blue). The phase separation phenomenon is visible. ![soliton-x0](uploads/927457810c8d21c7ee1f80d5a67342a3/soliton-x0.png)
![visit0002](uploads/d51bec1985fcbac0d6be10793a766d47/visit0002.png) # Archival examples
\ No newline at end of file For other examples you can see [here](st-wslda examples archival).
\ No newline at end of file
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages