Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • st wslda examples

st wslda examples · Changes

Page history
Update st wslda examples authored Feb 19, 2024 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
st-wslda-examples.md
View page @ 32c87604
[[_TOC_]]
# Example 1: gas confined in a tube
The solution of cold atomic gas in an external potential of the form of a tube. Gas with is in BCS regime with $`ak_F=-0.9`$. In the calculation, we assumed translation symmetry along z direction and `st-wslda-2d` was used. In the computation, `double` arithmetic is utilized.
* [predefines.h](uploads/b0f9c475f5dbd44640310b713ecb5ea5/tube_predefines.h)
* [problem-definition.h](uploads/cd9da4754c87bf4eabe4977246ba534b/tube_problem-definition.h)
* [input.txt](uploads/df292f7036ca8ffd86d4986cb40c1449/tube_input.txt)
* [output](uploads/799f6e104160a09fe4bf542d989cedcf/tube.out)
The graph below shows density distribution (left) and the absolute value of delta (right) for the converged solution.
![example-st-1](uploads/b8a8ec63f10ec99c2573207580e7ad32/example-st-1.png)
# Example 2: vortex solution within BdG
The solution representing a vortex confined in a tube. The conditions are the same as for *Example 1*. To speed up the convergence process we start from the state provided by *Example 1*. In the computation, `double complex` arithmetic is utilized.
* [predefines.h](uploads/0a1ad93743c8f9544e59338ba8220563/vortex_predefines.h)
* [problem-definition.h](uploads/215195b78623a61bc1f4df47c27e5d7a/vortex_problem-definition.h)
* [input.txt](uploads/1e340d91f45dc57900152866a9a956ef/vortex_input.txt)
* [output](uploads/633a07650caee1345b0a1fbdd9513d51/vortex.out)
The graph below shows density distribution (left) and the absolute value of delta (right) for the converged solution. By arrows currents are plotted.
![example-st-2](uploads/f896b92eeaa489872600109615ef066b/example-st-2.png)
# Example 3: mass imbalanced gas in a harmonic trap
This example is motivated by work [arXiv:1909.03424](https://arxiv.org/abs/1909.03424).
Namely, let us consider gas of:
* component *a*: $`{}^{161}\textrm{Dy}`$,
* component *b*: $`{}^{40}\textrm{K}`$,
confined in harmonic trap:
```math
V_{a,b}(x)=\dfrac{m_a \omega_a^2 x^2}{2}
# Example 1: Unitary Fermi Gas is confided in a 1D (smooth) squared well
Target: generate solution in a 1D potential well $`V_{\textrm{ext}}(x,y,z)\rightarrow V_{\textrm{ext}}(x)`$, with bulk density corresponding $`k_F=1`$.
Code: `st-wslda-1d`
Settings:
* [only-trap_predefines.h](uploads/5122091213e767bee5a89afbc45b7993/only-trap_predefines.h)
* [only-trap_problem-definition.h](uploads/5a7357a2d602ec450520392fcdf2e84b/only-trap_problem-definition.h)
* [only-trap_logger.h](uploads/750f361d4a09b1095d357cb3c6841043/only-trap_logger.h)
* [only-trap_input.txt](uploads/f34247597824ab74800e9d3521577fdf/only-trap_input.txt)
Output:
* [only-trap.stdout](uploads/0aeeac20397398ee3e45ae7dbbf6fcde/only-trap.stdout)
Simple plotting script:
```python
import numpy as np
import matplotlib.pyplot as plt
from wdata.io import WData, Var
data = WData.load("only-trap.wtxt")
fig, ax = plt.subplots()
ax.plot(data.xyz[0], data.rho_a[-1]*2, color='red', label=r'density', lw=3.0) # plot last frame [-1]
ax.set(xlabel='x', ylabel=r'$n(x)$')
ax2 = ax.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(data.xyz[0], np.angle(data.delta[-1])/np.pi, color='blue', label=r'arg. of phase', lw=2.0, ls="--") # plot last frame [-1]
ax2.set(ylabel=r'$V_{ext}(x)$')
fig.legend(loc="upper left", bbox_to_anchor=(0.3,0.3), bbox_transform=ax.transAxes)
fig.savefig("only-trap.png")
```
![only-trap](uploads/545443b201c91c8424b1a075635c5451/only-trap.png)
# Example 2: Soliton in the unitary Fermi gas.
Target: on top of the Example 1 imprint soliton.
Code: `st-wslda-1d`
Settings:
* [soliton-x0_predefines.h](uploads/e3084b524d482bc515621352fadca83c/soliton-x0_predefines.h)
* [soliton-x0_problem-definition.h](uploads/5ad3f678404f2c4514f25c6bd118924b/soliton-x0_problem-definition.h)
* [soliton-x0_logger.h](uploads/d6d215b8ea32b8080f7458f1f9fb3883/soliton-x0_logger.h)
* [soliton-x0_input.txt](uploads/1c6687fb205ee655eabb61e6d8b56a33/soliton-x0_input.txt)
Output:
* [soliton-x0.stdout](uploads/4e94c17ea973b427b4ffd7f990769a49/soliton-x0.stdout)
Simple plotting script:
```python
import numpy as np
import matplotlib.pyplot as plt
from wdata.io import WData, Var
data = WData.load("soliton-x0.wtxt")
fig, ax = plt.subplots()
ax.plot(data.xyz[0], data.rho_a[-1]*2, color='red', label=r'density', lw=3.0) # plot last frame [-1]
ax.set(xlabel='x', ylabel=r'$n(x)$')
ax2 = ax.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(data.xyz[0], np.angle(data.delta[-1])/np.pi, color='blue', label=r'arg. of phase', lw=2.0, ls="--") # plot last frame [-1]
ax2.set(ylabel=r'$Arg[\Delta](x)/\pi$')
fig.legend(loc="upper left", bbox_to_anchor=(0.15,0.3), bbox_transform=ax.transAxes)
fig.savefig("soliton-x0.png")
```
where traping frequencies of both components are different (in the example we use according to [arXiv:1909.03424](https://arxiv.org/abs/1909.03424) $`\omega_a/\omega_b=120/430`$). In addition $`N_{\textrm{Dy}} / N_{\textrm{K}} = 20000/8000`$. In the calculations BdG functional is used, with the scattering length exceeding other length scales (in the example $`a=100`$). In the calculation `st-wslda-1d` was used.
* [predefines.h](uploads/8bed3548acc9dd04a2ccf54a35687ac7/DyK_predefines.h)
* [problem-definition.h](uploads/475df575833b5d4e92acd77b30992930/DyK_problem-definition.h)
* [logger.h](uploads/8ac2b1262a442fa45092727564919f94/DyK_logger.h)
* [input.txt](uploads/287f965385d1da19e7d84f007ec26a0e/DyK_input.txt)
* [DyK.out](uploads/8829e64cb15639be6a1dfb44e55c5314/DyK.out)
The graph below shows density distribution along *x* axis of $`{}^{161}\textrm{Dy}`$ (red) and $`{}^{40}\textrm{K}`$ (blue). The phase separation phenomenon is visible.
![soliton-x0](uploads/927457810c8d21c7ee1f80d5a67342a3/soliton-x0.png)
![visit0002](uploads/d51bec1985fcbac0d6be10793a766d47/visit0002.png)
\ No newline at end of file
# Archival examples
For other examples you can see [here](st-wslda examples archival).
\ No newline at end of file
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages