Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Types of codes

Types of codes · Changes

Page history
Update Types of codes authored Nov 27, 2023 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
Types-of-codes.md
View page @ a0f4316f
......@@ -2,27 +2,39 @@
# Static and time-dependent codes
There are two main branches of codes:
* Static codes `st-wslda-?d` for solving self-consistently static DFT equations.
* Time-dependent codes `td-wslda-?d` for solving time dependent DFT equations. The `td-wslda-?d` codes require starting point for the time evolution (i.e $`\psi(\vec{r},t=0)`$) which is typically generated by the static codes.
* Time-dependent codes `td-wslda-?d` for solving time-dependent DFT equations. The `td-wslda-?d` codes require a starting point for the time evolution (i.e. $`\psi(\vec{r},t=0)`$), which is typically generated by the static codes.
In codes names `?` stand for dimensionality, as described below.
In code names, `?` stands for dimensionality, as described below.
# Codes dimensionality (xx: st or td)
## 3D codes: `xx-wslda-3d`
The 3D codes do not impose any restriction for form of the wave-functions. The wave-functions are assumed to be:
![\psi=\varphi(x,y,z)](https://render.githubusercontent.com/render/math?math=%5Cpsi%3D%5Cvarphi(x%2Cy%2Cz))
The 3D codes do not impose any restriction on the form of the wave functions. The wave functions are assumed to be:
```math
\psi=\varphi(x,y,z)
```
## 2D codes: `xx-wslda-2d`
In 2D codes the wave-functions are assumed to be:
![\psi=\varphi(x,y)\frac{1}{\sqrt{L_z}}e^{ik_z z}](https://render.githubusercontent.com/render/math?math=%5Cpsi%3D%5Cvarphi(x%2Cy)%5Cfrac%7B1%7D%7B%5Csqrt%7BL_z%7D%7De%5E%7Bik_z%20z%7D%0A)
In 2D codes, the wave functions are assumed to be:
```math
\psi=\varphi(x,y)\frac{1}{\sqrt{L_z}}e^{ik_z z}
```
where
![k_z = 0, \pm 1 \frac{2\pi}{L_z}, \pm 2 \frac{2\pi}{L_z}, \ldots , +(N_z-1) \frac{2\pi}{L_z}](https://render.githubusercontent.com/render/math?math=k_z%20%3D%200%2C%20%5Cpm%201%20%5Cfrac%7B2%5Cpi%7D%7BL_z%7D%2C%20%5Cpm%202%20%5Cfrac%7B2%5Cpi%7D%7BL_z%7D%2C%20%5Cldots%20%2C%20%2B(N_z-1)%20%5Cfrac%7B2%5Cpi%7D%7BL_z%7D%0A)
For `NZ=1` the code solves 2D problem (there is only one mode in z-directions, which reduces to 1). Note however, that 2D problem requires different prescription for coupling constant regularization than the one implemented in W-SLDA toolkit.
```math
k_z = 0, \pm 1 \frac{2\pi}{L_z}, \pm 2 \frac{2\pi}{L_z}, \ldots , +(N_z-1) \frac{2\pi}{L_z}
```
For `NZ=1`, the code solves a 2D problem (there is only one mode in z-directions, which reduces to 1). Note, however, that the 2D problem requires a different prescription for coupling constant regularization than the one implemented in the W-SLDA toolkit.
## 1D codes: `xx-wslda-1d`
In 1D codes the wave-functions are assumed to be:
![\psi=\varphi(x)\frac{1}{\sqrt{L_y}}e^{ik_y y}\frac{1}{\sqrt{L_z}}e^{ik_z z}](https://render.githubusercontent.com/render/math?math=%5Cpsi%3D%5Cvarphi(x)%5Cfrac%7B1%7D%7B%5Csqrt%7BL_y%7D%7De%5E%7Bik_y%20y%7D%5Cfrac%7B1%7D%7B%5Csqrt%7BL_z%7D%7De%5E%7Bik_z%20z%7D%0A)
In 1D codes, the wave functions are assumed to be:
```math
\psi=\varphi(x)\frac{1}{\sqrt{L_y}}e^{ik_y y}\frac{1}{\sqrt{L_z}}e^{ik_z z}
```
where
![k_y = 0, \pm 1 \frac{2\pi}{L_y}, \pm 2 \frac{2\pi}{L_y}, \ldots , +(N_y-1) \frac{2\pi}{L_y}](https://render.githubusercontent.com/render/math?math=k_y%20%3D%200%2C%20%5Cpm%201%20%5Cfrac%7B2%5Cpi%7D%7BL_y%7D%2C%20%5Cpm%202%20%5Cfrac%7B2%5Cpi%7D%7BL_y%7D%2C%20%5Cldots%20%2C%20%2B(N_y-1)%20%5Cfrac%7B2%5Cpi%7D%7BL_y%7D%0A)
![k_z = 0, \pm 1 \frac{2\pi}{L_z}, \pm 2 \frac{2\pi}{L_z}, \ldots , +(N_z-1) \frac{2\pi}{L_z}](https://render.githubusercontent.com/render/math?math=k_z%20%3D%200%2C%20%5Cpm%201%20%5Cfrac%7B2%5Cpi%7D%7BL_z%7D%2C%20%5Cpm%202%20%5Cfrac%7B2%5Cpi%7D%7BL_z%7D%2C%20%5Cldots%20%2C%20%2B(N_z-1)%20%5Cfrac%7B2%5Cpi%7D%7BL_z%7D%0A)
For `NY=1` and `NZ=1` the code solves 1D problem . Note however, that 1D problem requires different prescription for coupling constant regularization than the one implemented in W-SLDA toolkit.
\ No newline at end of file
```math
k_y = 0, \pm 1 \frac{2\pi}{L_y}, \pm 2 \frac{2\pi}{L_y}, \ldots , +(N_y-1) \frac{2\pi}{L_y}
```
```math
k_z = 0, \pm 1 \frac{2\pi}{L_z}, \pm 2 \frac{2\pi}{L_z}, \ldots , +(N_z-1) \frac{2\pi}{L_z}
```
For `NY=1` and `NZ=1`, the code solves a 1D problem. Note, however, that the 1D problem requires a different prescription for coupling constant regularization than the one implemented in the W-SLDA toolkit.
\ No newline at end of file
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages