|
|
|
**VERSION>=2021.09.18**
|
|
|
|
|
|
|
|
# Tracking the states
|
|
|
|
W-SLDA Toolkit allows to track observables arsing from selected states in time. Presently following quantities can be tracked:
|
|
|
|
* `subset_rho_a`:
|
|
|
|
$`n_{\uparrow}^{\textrm{(subset)}}(r)= \sum_{E_{\textrm{min}}^{\textrm{(subset)}}<E_n<E_{\textrm{max}}^{\textrm{(subset)}}}|u_{n,\uparrow}(r)|^2 f_{\beta}(E_n)`$
|
|
|
|
* `subset_rho_b`:
|
|
|
|
$`n_{\downarrow}^{\textrm{(subset)}}(r) = \sum_{E_{\textrm{min}}^{\textrm{(subset)}}<E_n<E_{\textrm{max}}^{\textrm{(subset)}}}|v_{n,\downarrow}(r)|^2 f_{\beta}(-E_n)`$
|
|
|
|
* `subset_j_a_x`, `subset_j_a_y`, `subset_j_a_z`:
|
|
|
|
$`\vec{j}_{\uparrow}^{\textrm{(subset)}}(r) = -\sum_{E_{\textrm{min}}^{\textrm{(subset)}}<E_n<E_{\textrm{max}}^{\textrm{(subset)}}} \textrm{Im}[u_{n,\uparrow}(r)\nabla u_{n,\uparrow}^*(r)]f_{\beta}(E_n)`$
|
|
|
|
* `subset_j_b_x`, `subset_j_b_y`, `subset_j_b_z`:
|
|
|
|
$`\vec{j}_{\downarrow}^{\textrm{(subset)}}(r) = \sum_{E_{\textrm{min}}^{\textrm{(subset)}}<E_n<E_{\textrm{max}}^{\textrm{(subset)}}} \textrm{Im}[v_{n,\downarrow}(r)\nabla v_{n,\downarrow}^*(r)]f_{\beta}(-E_n)`$
|
|
|
|
|
|
|
|
To control interval range $`E_{\textrm{min}}^{\textrm{(subset)}}<E_n<E_{\textrm{max}}^{\textrm{(subset)}}`$ use `input` file variables:
|
|
|
|
```bash
|
|
|
|
subsetMinEn 0.0 # in eF units, deafault=0.0
|
|
|
|
subsetMaxEn 0.0 # in eF units, deafault=0.0
|
|
|
|
```
|
|
|
|
|
|
|
|
In the case of spin-imbalanced systems, it is also convenient to introduce a shift of quasiparticle energies when selecting the states: $`E_n \rightarrow E_n+\frac{\mu_{\uparrow}-\mu_{\downarrow}}{2}`$. This can be done automatically via enabling
|
|
|
|
```bash
|
|
|
|
subsetShiftDmu 1 # if 1 then apply extra shift of quasiparticle energies by (mu_a-mu_b)/2, default=0
|
|
|
|
```
|
|
|
|
|
|
|
|
# Example
|
|
|
|
TODO: Andrea |
|
|
|
\ No newline at end of file |