Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Tracking of selected states

Tracking of selected states · Changes

Page history
Update Tracking of selected states authored Nov 11, 2021 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
Tracking-of-selected-states.md
View page @ 59ece640
**VERSION>=2021.09.18**
# Tracking the states
W-SLDA Toolkit allows to track observables arsing from selected states in time. Presently following quantities can be tracked:
W-SLDA Toolkit allows to track observables arising from selected states in time. Presently following quantities can be tracked:
* `subset_rho_a`:
$`n_{\uparrow}^{\textrm{(subset)}}(r)= \sum_{E_{\textrm{min}}^{\textrm{(subset)}}<E_n<E_{\textrm{max}}^{\textrm{(subset)}}}|u_{n,\uparrow}(r)|^2 f_{\beta}(E_n)`$
* `subset_rho_b`:
......@@ -17,10 +17,22 @@ subsetMinEn 0.0 # in eF units, deafault=0.0
subsetMaxEn 0.0 # in eF units, deafault=0.0
```
In the case of spin-imbalanced systems, it is also convenient to introduce a shift of quasiparticle energies when selecting the states: $`E_n \rightarrow E_n+\frac{\mu_{\uparrow}-\mu_{\downarrow}}{2}`$. This can be done automatically via enabling
In the case of spin-imbalanced systems, it is also convenient to introduce a shift of quasiparticle energies when selecting the states: $`E_n \rightarrow E_n+\frac{\mu_{\uparrow}-\mu_{\downarrow}}{2}`$. This can be done automatically by enabling
```bash
subsetShiftDmu 1 # if 1 then apply extra shift of quasiparticle energies by (mu_a-mu_b)/2, default=0
```
# Example
TODO: Andrea
\ No newline at end of file
Below we present a snapshot from a simulation with SLDA functional for the spin-symmetric system. `td-wslda-2d` has been used. The unitary Fermi gas is confined in a tube, and the vortex dipole is imprinted in the initial state. Following options for subset tracking were used
```bash
# ---------------- SUBSET TRACKING ------------------
# See: Wiki -> Tracking of selected states
# observables (densities, currents) arising from state in the energy interval En in [subsetMinEn,subsetMaxEn]
# will be computed, if subsetMinEn=subsetMaxEn=0 the functionality is disables
subsetMinEn -0.35 # in eF units, deafault=0.0
subsetMaxEn 0.35 # in eF units, deafault=0.0
subsetShiftDmu 1 # if 1 then apply extra shift of quasiparticle energies by (mu_a-mu_b)/2, default=0
```
For the unitary Fermi Gas $`\Delta/\varepsilon_{F}=0.5`$, thus as the subset we select only in-gap states, which in this case corresponds to Andreev vortex states. They are localized in the vortex core. It is visualized below: the left half shows $`\Delta(r)/\varepsilon_{F}`$, while the right half shows `subset_rho_a`.
![subset](uploads/448524d11f75bbd5e63179d7ba7722b9/subset.png)
\ No newline at end of file
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages