Energy
Energy is computed from the formula:
E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r+\sum_{\sigma}\int V_{\sigma}^{\textrm{(ext)}}(r)n_{\sigma}(r)\,d^3r\\-\frac{1}{2}\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r
The intrinsic energy is assumed to have a generic structure:
E_{\textrm{edf}} = \int \mathcal{E}_{\textrm{edf}}\,d^3r = \int\left(\mathcal{E}_{\textrm{kin}} + \mathcal{E}_{\textrm{pot}} + \mathcal{E}_{\textrm{pair}} + \mathcal{E}_{\textrm{curr}}\right)d^3r
where:
-
E_kin
:
E_{\textrm{kin}} = \int\mathcal{E}_{\textrm{kin}}\,d^3r = \int \sum_{\sigma=\{\uparrow,\downarrow\}}\frac{\alpha_{\sigma}}{2}\left(\tau_{\sigma}-\frac{\vec{j}_{\sigma}^2}{n_{\sigma}}\right)d^3r
-
E_pot
:
E_{\textrm{pot}} = \int\mathcal{E}_{\textrm{pot}}\,d^3r =\int D(n_{\uparrow},n_{\downarrow}, \nu, \ldots)\,d^3r
-
E_pair
:
E_{\textrm{pair}} = \int\mathcal{E}_{\textrm{pair}}\,d^3r =\int g(n_{\uparrow},n_{\downarrow})\nu^{\dagger}\nu\,d^3r
-
E_curr
:
E_{\textrm{curr}} = \int\mathcal{E}_{\textrm{curr}}\,d^3r =\int \sum_{\sigma=\{\uparrow,\downarrow\}}\frac{\vec{j}_{\sigma}^2}{2n_{\sigma}}\,d^3r
Contributions to energies from the external potentials are:
-
E_potext
:
E_{\textrm{pot.ext}} = \int \sum_{\sigma=\{\uparrow,\downarrow\}} V_{\sigma}^{\textrm{(ext)}}(r)n_{\sigma}(r)\,d^3r
-
E_pairext
:
E_{\textrm{pair.ext}} = -\frac{1}{2}\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r
-
E_velext
:
E_{\textrm{vel.ext}} = -\int \sum_{\sigma=\{\uparrow,\downarrow\}}\vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r
The total energy E_tot
is computed as the sum of all these contributions.
Densities
Densities are computed according to formulas:
-
nu
:
\nu(r) = \frac{1}{2}\sum_{|E_n|<E_c} u_{n,\uparrow}(r)v_{n,\downarrow}^{*}(r)( f_{\beta}(-E_n)-f_{\beta}(E_n) )
-
rho_a
:
n_{\uparrow}(r)= \sum_{|E_n|<E_c}|u_{n,\uparrow}(r)|^2 f_{\beta}(E_n)
-
rho_b
:
n_{\downarrow}(r) = \sum_{|E_n|<E_c}|v_{n,\downarrow}(r)|^2 f_{\beta}(-E_n)
-
tau_a
:
\tau_{\uparrow}(r) = \sum_{|E_n|<E_c}|\nabla u_{n,\uparrow}(r)|^2 f_{\beta}(E_n)
-
tau_b
:
\tau_{\downarrow}(r) = \sum_{|E_n|<E_c}|\nabla v_{n,\downarrow}(r)|^2 f_{\beta}(-E_n)
-
j_a_x
,j_a_y
,j_a_z
:
\vec{j}_{\uparrow}(r) = -\sum_{|E_n|<E_c} \textrm{Im}[u_{n,\uparrow}(r)\nabla u_{n,\uparrow}^*(r)]f_{\beta}(E_n)
-
j_b_x
,j_b_y
,j_b_z
:
\vec{j}_{\downarrow}(r) = \sum_{|E_n|<E_c} \textrm{Im}[v_{n,\downarrow}(r)\nabla v_{n,\downarrow}^*(r)]f_{\beta}(-E_n)
In these formulas E_{n}
denotes quasi-particle energy, and E_c
is the energy cut-off scale. Fermi distribution function f_{\beta}(E)=1/(\exp(\beta E)+1)
is introduced to model temperature T=1/\beta
effects.
Densities are accessible to users through structure wslda_density:
typedef struct
{
int nx;
int ny; /// for 1d code it is set to 1
int nz; /// for 1d and 2d code it is set to 1
int datadim; /// dimensionality of data
int blocklength; /// number of elements in potential array = nx*ny*nz
// densities
double complex *nu;
double *rho_a;
double *rho_b;
double *tau_a;
double *tau_b;
double *j_a_x;
double *j_a_y;
double *j_a_z;
double *j_b_x;
double *j_b_y;
double *j_b_z;
} wslda_density;
Potentials
Minimization of the functional with respect to quasiparticle orbitals provides Bogoliubov-de Gennes type equations. Its general form is:
\begin{pmatrix}h_{\uparrow}(r) & \Delta(r)+ \Delta_{\textrm{ext}}(r) \\\Delta^*(r)+ \Delta^*_{\textrm{ext}}(r) & -h^*_{\downarrow}(r)\end{pmatrix} \begin{pmatrix}u_{n\uparrow}(r) \\ v_{n\downarrow}(r)\end{pmatrix}= E_n\begin{pmatrix}u_{n\uparrow}(r) \\ v_{n\downarrow}(r)\end{pmatrix}
where single particle hamiltonian is given by
h_{\sigma} = -\dfrac{1}{2}\vec{\nabla}\alpha_{\sigma}(r)\vec{\nabla} + V_{\sigma}(r)-\left(\mu_{\sigma}-V_{\sigma}^{\textrm{(ext)}}(r)\right)-\dfrac{i}{2}\left\lbrace \vec{A}_{\sigma}(r)-\vec{v}_{\sigma}^{\textrm{(ext)}}(r),\vec{\nabla} \right\rbrace
Potentials entering the hamiltonian are:
-
alpha_a
andalpha_b
:
\alpha_{\sigma} = 2\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta \tau_{\sigma}}
-- effective mass, -
V_a
andV_b
:
V_{\sigma}=\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta n_{\sigma}}
-- mean-field potential, -
A_a_x
,A_a_y
,A_a_z
,A_b_x
,A_b_z
, andA_b_z
:
\vec{A}_{\sigma}=\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta \vec{j}_{\sigma}}
-- current potential, -
delta
:
\Delta(r)=-\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta \nu^*}
-- paring potential.
Potentials are accessible for user through structure wslda_potential:
typedef struct
{
int nx;
int ny; /// for 1d code it is set to 1
int nz; /// for 1d and 2d code it is set to 1
int datadim; /// dimensionality of data
int blocklength; /// number of elements in potential array = nx*ny*nz
// potentials
double complex *delta;
double *alpha_a; /// effective mass, spin-a
double *alpha_b; /// effective mass, spin-b
double *V_a;
double *V_b;
double *A_a_x;
double *A_a_y;
double *A_a_z;
double *A_b_x;
double *A_b_y;
double *A_b_z;
} wslda_potential;