... | ... | @@ -3,7 +3,7 @@ |
|
|
# Energy
|
|
|
Energy is computed from the formula:
|
|
|
```math
|
|
|
E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r+\sum_{\sigma}\int V_{\sigma}^{\textrm{(ext)}}(r)n_{\sigma}(r)\,d^3r-\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r
|
|
|
E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r+\sum_{\sigma}\int V_{\sigma}^{\textrm{(ext)}}(r)n_{\sigma}(r)\,d^3r\\-\frac{1}{2}\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r
|
|
|
```
|
|
|
|
|
|
The instrictic energy is assumed to have the generic structure:
|
... | ... | @@ -34,7 +34,7 @@ E_{\textrm{pot.ext}} = \int \sum_{\sigma=\{\uparrow,\downarrow\}} V_{\sigma}^{\t |
|
|
```
|
|
|
* `E_pairext`:
|
|
|
```math
|
|
|
E_{\textrm{pair.ext}} = -\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r
|
|
|
E_{\textrm{pair.ext}} = -\frac{1}{2}\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r
|
|
|
```
|
|
|
* `E_velext`:
|
|
|
```math
|
... | ... | |