Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Parallelization scheme of static codes

Parallelization scheme of static codes · Changes

Page history
Update Parallelization scheme of static codes authored Jan 27, 2021 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
Parallelization-scheme-of-static-codes.md
View page @ 51ff180e
......@@ -42,7 +42,7 @@ k_z = 0, \pm 1 \frac{2\pi}{L_z}, \pm 2 \frac{2\pi}{L_z}, \ldots , +(N_z-1) \frac
```
and $`L_z = NZ*DZ`$ is the box length along z-direction. From physical point of view, it means that we impose translation symmetry along z-direction. Under this assumption BdG matrix acquires block-diagonal form:
![HBdG-2d](uploads/9659540e2c865b7a6736e55cec10aa50/HBdG-2d.png)
and diagonalization of the matrix is equivalent to diagonalizations of submatrices $`H(k_{z,i})`$, each of them of size `matrix_size=2*NX*NY`. Moreover, the translation symmetry imposes that $`H(k_{z})=H(-k_{z})`$ and in practice it is sufficient to diagonalize only submatrices for positive $`k_z`$, which takes $NZ/2$ values. Submantcies can be diagonalized simultaneously.
and diagonalization of the matrix is equivalent to diagonalizations of submatrices $`H(k_{z,i})`$, each of them of size `matrix_size=2*NX*NY`. Moreover, the translation symmetry imposes that $`H(k_{z})=H(-k_{z})`$ and in practice it is sufficient to diagonalize only submatrices for positive $`k_z`$, which takes `NZ/2` values. Submatrices can be diagonalized simultaneously.
To demonstrate parallelization scheme in 2D case, let us consider following lattice:
```c
......
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages