Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Noise filtering

Noise filtering · Changes

Page history
Create Noise filtering authored Feb 01, 2025 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
Noise-filtering.md 0 → 100644
View page @ 1abb8877
# Stabilization scheme
Some of the terms in the EDF introduce the time-dependent propagation of the high-momenta components. Examples are terms that contain division by density and may lead to noise generation in regions where density vanishes.
These modes can amplify during the time-dependent propagation and destabilize the integration scheme. To avoid this, we introduced the filtering scheme.
1. compute mean-field $`V_\sigma(\vec{r})`$,
2. go to Fourier space $`V_\sigma(\vec{k})`$,
3. apply filter function $`\tilde{V}_\sigma(\vec{k})=V_\sigma(\vec{k})\cdot FD(\frac{k^2}{2m},\mu, T)`$,
4. go back to coordinate space $`\tilde{V}_\sigma(\vec{r})`$ and use it during the time-propagation.
As the filter function, we use the Fermi-Dirac function:
```math
FD(e_k,\mu, T)=\frac{1}{\exp[\frac{e_k-\mu}{T}]+1}
```
The same procedure can be used to folder noise that is generated in the pairing potential $`\Delta(\vec{r})`$.
# Testing script
You can use the attached script [tools/high-frequency-filter.py](https://gitlab.fizyka.pw.edu.pl/wtools/w-bsk/-/blob/devel/tools/high-frequency-filter.py) to test the impact of the filtering scheme on the input signal. Below is an example of the script output.
![high-frequency-filter](https://gitlab.fizyka.pw.edu.pl/wtools/w-bsk/raw/devel/tools/high-frequency-filter.png)
# Controlling the filter
The filter can be controlled via the input file:
```bash
# -------------- HIGH K-WAVES FILTER ----------------
# See: Wiki -> Stabilization of the time-dependent code
# hkf_mode 1 # 0 - no noise filtering (default)
# 1 - noise filtering for mean-fields only
# 2 - noise filtering of mean-fields and pairing field
# hkf_mu 0.9 # mu parameter of the Fermi-Dirac (filtering) function, in Ec units, default=0.9
# hkf_T 0.02 # T parameter of the Fermi-Dirac (filtering) function, in Ec units, default=0.02
```
\ No newline at end of file
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages