Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Installing the toolkit

Installing the toolkit · Changes

Page history
Update Installing the toolkit authored Dec 08, 2020 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
Installing-the-toolkit.md
View page @ 51328871
# Requirements
## Static codes (st-wslda)
* C compiler (eg. `gcc`, intel compiler `icc`, ...)
* MPI C compiler (eg. `mpicc`, intel compiler `mpiicc`, ...)
* [FFTW library](http://www.fftw.org/)
* LAPACK library
* ScaLAPACK library
* [ELPA library](https://elpa.mpcdf.mpg.de/) (optionally)
* [CUDA compiler](https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html) (optionally, for ELPA)
*Note 1*: compilers and libraries (FFTW, LAPACK, ScaLAPACK) are installed by default on most of computing clusters. If computing system is equipped with GPUs most likely CUDA Toolkit is also installed. On many systems ELPA is also installed by default. If not you can compile it yourself.
*Note 2*: It is recommend to use `st-wslda` with ELPA support if possible. It provides substantial speed-up of computation process.
## Time-dependent codes (td-wslda)
* C compiler (eg. `gcc`, intel compiler `icc`, ...)
* MPI C compiler (eg. `mpicc`, intel compiler `mpiicc`, ...)
* [CUDA compiler](https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html)
*Note 1*: Time dependent codes **require** systems accelerated by GPUs. `td-wslda` codes cannot run on standard systems based on CPUs only.
# Downloading the toolkit # Downloading the toolkit
It is recommended to download the toolkit directly from repository using git It is recommended to download the toolkit directly from repository using git
```bash ```bash
......
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages