Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Helmholtz decomposition code

Helmholtz decomposition code · Changes

Page history
Update Helmholtz decomposition code authored Sep 01, 2021 by Andrea Barresi's avatar Andrea Barresi
Hide whitespace changes
Inline Side-by-side
Helmholtz-decomposition-code.md
View page @ dead9c3f
**VERSION>=2021.09.01**
# Introduction
Info about theory. Link to Tsubota paper...
Analysis of turbulence and vortices requires knowledge of the kinetic energy, is conservation and its modes. This tool performs the Helmholtz Decomposition, in order to extract the compressive and rotational components of kinetic energy of the flow as shown in **Tsubota, Fujimoto, Yui** (2017) [**Numerical Studies of Quantum Turbulence.**](https://arxiv.org/abs/1704.02566).
We define the effective velocity field as <a href="https://www.codecogs.com/eqnedit.php?latex=\omega(\textbf{r},t)=\sqrt{\rho(\textbf{r},t)}v(\textbf{r},t)" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\omega(\textbf{r},t)=\sqrt{\rho(\textbf{r},t)}v(\textbf{r},t)" title="\omega(\textbf{r},t)=\sqrt{\rho(\textbf{r},t)}v(\textbf{r},t)" /></a>. From this, we can calculate the kinetic energy as:
<a href="https://www.codecogs.com/eqnedit.php?latex=E_k=\frac{m}{2V}\int&space;\omega(\textbf{r},t)^2d\textbf{r}=\frac{m}{2}\sum_{\textbf{k}}|\widetilde{\omega}(\textbf{k},t)|^2" target="_blank"><img src="https://latex.codecogs.com/gif.latex?E_k=\frac{m}{2V}\int&space;\omega(\textbf{r},t)^2d\textbf{r}=\frac{m}{2}\sum_{\textbf{k}}|\widetilde{\omega}(\textbf{k},t)|^2" title="E_k=\frac{m}{2V}\int \omega(\textbf{r},t)^2d\textbf{r}=\frac{m}{2}\sum_{\textbf{k}}|\widetilde{\omega}(\textbf{k},t)|^2" /></a>,
where <a href="https://www.codecogs.com/eqnedit.php?latex=\widetilde{\omega}(\textbf{k},t)=\mathfrak{F}[\omega(\textbf{r},t)]=\int&space;\omega(\textbf{r},t)&space;\frac{e^{-i\textbf{k}\cdot\textbf{r}}}{V}d\textbf{r}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\widetilde{\omega}(\textbf{k},t)=\mathfrak{F}[\omega(\textbf{r},t)]=\int&space;\omega(\textbf{r},t)&space;\frac{e^{-i\textbf{k}\cdot\textbf{r}}}{V}d\textbf{r}" title="\widetilde{\omega}(\textbf{k},t)=\mathfrak{F}[\omega(\textbf{r},t)]=\int \omega(\textbf{r},t) \frac{e^{-i\textbf{k}\cdot\textbf{r}}}{V}d\textbf{r}" /></a> is the Fourier Transform of the effective velocity.
From this, we can apply the Helmholtz Decomposition theorem to obtain the compressive and rotational components of the effective velocity field:
<a href="https://www.codecogs.com/eqnedit.php?latex=\omega(\textbf{r},t)=&space;\omega_0(t)&plus;\omega_c(\textbf{r},t)&plus;\omega_i(\textbf{r},t)" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\omega(\textbf{r},t)=&space;\omega_0(t)&plus;\omega_c(\textbf{r},t)&plus;\omega_i(\textbf{r},t)" title="\omega(\textbf{r},t)= \omega_0(t)+\omega_c(\textbf{r},t)+\omega_i(\textbf{r},t)" /></a>
<a href="https://www.codecogs.com/eqnedit.php?latex=\omega_c(\textbf{r},t)=\sum_{\textbf{k}\neq0}^{}&space;\frac{\textbf{k}\cdot&space;\widetilde{\omega}(\textbf{k},t)}{k^2}\;&space;\textbf{k}e^{i\textbf{k}\cdot\textbf{r}}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\omega_c(\textbf{r},t)=\sum_{\textbf{k}\neq0}^{}&space;\frac{\textbf{k}\cdot&space;\widetilde{\omega}(\textbf{k},t)}{k^2}\;&space;\textbf{k}e^{i\textbf{k}\cdot\textbf{r}}" title="\omega_c(\textbf{r},t)=\sum_{\textbf{k}\neq0}^{} \frac{\textbf{k}\cdot \widetilde{\omega}(\textbf{k},t)}{k^2}\; \textbf{k}e^{i\textbf{k}\cdot\textbf{r}}" /></a>
# Usage
TODO: explain how to use...
......
Clone repository
  • API version
  • Automatic interpolations
  • Auxiliary tools
  • Browsing the code
  • Broyden algorithm
  • C and CUDA
  • Campaign of calculations
  • Checking correctness of settings
  • Chemical potentials control
  • Code & Results quality
  • Common failures of static codes
  • Common failures of time dependent codes
  • Computation domain
  • Configuring GPU machine
  • Constraining densities and potentials
View All Pages