In each iteration used can impose by hand various constraints on densities or potentials. problem-definition.h file provides handlers for these operations.
If you want to constrain density you need to provide a body of the function:
/**
* THIS FUNCTION IS CALLED DURING THE SELF-CONSISTENT PROCESS.
* Before each diagonalization process, user can modify arbitrarily densities
* @param it iteration number
* @param h_densities structure with densities, see (wiki) documentation for list of fields
* @param params array of input parameters, before call of this routine the params array is processed by process_params() routine
* @param extra_data_size size of extra_data in bytes, if extra_data size=0 the optional data is not uploaded
* @param extra_data optional set of data uploaded by load_extra_data()
* */
void modify_densities(int it, wslda_density h_densities, double *params, size_t extra_data_size, void *extra_data)
{
// DETERMINE LOCAL SIZES OF ARRAYS (CODE DIMENSIONALITY DEPENDENT)
int lNX=h_densities.nx, lNY=h_densities.ny, lNZ=h_densities.nz; // local sizes
int ix, iy, iz, ixyz;
// ITERATE OVER ALL POINTS
ixyz=0;
for(ix=0; ix<lNX; ix++) for(iy=0; iy<lNY; iy++) for(iz=0; iz<lNZ; iz++)
{
double x = DX*(ix-lNX/2);
double y = DY*(iy-lNY/2); // for 1d code y will be always 0
double z = DZ*(iz-lNZ/2); // for 1d and 2d codes z will be always 0
// h_densities.rho_a[ixyz] stores value of spin-up particles densities for coordinate (x,y,z)
// and similarly for other densities
// ... below you can modify them at your wish ...
ixyz++; // go to next point, it should be last line of the triple loop
}
}
If you want to constrain potentials you need to provide a body of the function:
/**
* THIS FUNCTION IS CALLED DURING THE SELF-CONSISTENT PROCESS.
* Before each diagonalization process, user can modify arbitrarily potentials
* @param it iteration number
* @param h_densities structure with densities, see (wiki) documentation for list of fields
* NOTE: densities structure is processed by modify_densities(...) function before call ot this function.
* @param h_potentials struture with potentials, see (wiki) documentation for list of fields
* @param params array of input parameters, before call of this routine the params array is processed by process_params() routine
* @param extra_data_size size of extra_data in bytes, if extra_data size=0 the optional data is not uploaded
* @param extra_data optional set of data uploaded by load_extra_data()
* */
void modify_potentials(int it, wslda_density h_densities, wslda_potential h_potentials, double *params, size_t extra_data_size, void *extra_data)
{
// DETERMINE LOCAL SIZES OF ARRAYS (CODE DIMENSIONALITY DEPENDENT)
int lNX=h_densities.nx, lNY=h_densities.ny, lNZ=h_densities.nz; // local sizes
int ix, iy, iz, ixyz;
// ITERATE OVER ALL POINTS
ixyz=0;
for(ix=0; ix<lNX; ix++) for(iy=0; iy<lNY; iy++) for(iz=0; iz<lNZ; iz++)
{
double x = DX*(ix-lNX/2);
double y = DY*(iy-lNY/2); // for 1d code y will be always 0
double z = DZ*(iz-lNZ/2); // for 1d and 2d codes z will be always 0
// h_potentials.V_a[ixyz] stores value of spin-up particles mean-field potential for coordinate (x,y,z)
// and similarly for other potentials
// ... below you can modify them at your wish ...
ixyz++; // go to next point, it should be last line of the triple loop
}
}
Ordering of function calls
Function are called as follow:
while( not (convergence criteria) )
{
...
... create a hamiltonian matrix (potentials as input) ...
... diagonalize the hamiltonian matrix ...
... compute densities ...
modify_densities(it, densall, dc_params, extra_data_size, extra_data) ;
... compute potentials according to selected EDF ...
modify_potentials(it, densall, potsall, dc_params, extra_data_size, extra_data) ;
....
}
Example: imprinting vortex in the center of the system
The standard method of imprinting quantum vortex is to impose that order parameter has the following structure:
\Delta(\vec{r})=|\Delta(\vec{r})|e^{i\phi}
where \phi
is angle in cylindrical system, i.e \phi=\arctan(y/x)
. The procedure is implemented in function below:
void modify_potentials(int it, wslda_density h_densities, wslda_potential h_potentials, double *params, size_t extra_data_size, void *extra_data)
{
// DETERMINE LOCAL SIZES OF ARRAYS (CODE DIMENSIONALITY DEPENDENT)
int lNX=h_densities.nx, lNY=h_densities.ny, lNZ=h_densities.nz; // local sizes
int ix, iy, iz, ixyz;
// ITERATE OVER ALL POINTS
ixyz=0;
for(ix=0; ix<lNX; ix++) for(iy=0; iy<lNY; iy++) for(iz=0; iz<lNZ; iz++)
{
double x = DX*(ix-lNX/2);
double y = DY*(iy-lNY/2); // for 1d code y will be always 0
double z = DZ*(iz-lNZ/2); // for 1d and 2d codes z will be always 0
// phase imprint, while absolute value of paring is adjusted automatically
double d_abs = cabs(h_potentials.delta[ixyz]); // take absolute value of paring field
double phi = atan2(y,x); // compute by hand phase
h_potentials.delta[ixyz] = cexp(I*phi)*d_abs; // save new pattern of paring field
ixyz++; // go to next point, it should be last line of the triple loop
}
}