Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wbsk wbsk
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wbskwbsk
  • Wiki
  • Stabilization of the time dependent code

Stabilization of the time dependent code · Changes

Page history
Create Stabilization of the time dependent code authored Feb 08, 2024 by Gabriel Wlazłowski's avatar Gabriel Wlazłowski
Hide whitespace changes
Inline Side-by-side
Stabilization-of-the-time-dependent-code.md 0 → 100644
View page @ be063e31
# Stabilization scheme
Some of the terms in the EDF introduce to the time-dependent propagation of the high-momenta components. In particular, gradient terms $`U_q^{\Delta\rho}`$ have been identified as a source of such high-$`k`$ modes. These modes can amplify during the time-dependent propagation and destabilize the integration scheme. To avoid this, we introduced the filtering scheme.
1. compute $`U_q^{\Delta\rho}(\vec{r})`$,
2. go to Fourier space $`U_q^{\Delta\rho}(\vec{k})`$,
3. apply filter function $`\tilde{U}_q^{\Delta\rho}(\vec{k})=U_q^{\Delta\rho}(\vec{k})\cdot FD(\frac{k^2}{2m},\mu, T)`$,
4. go back to coordinate space $`\tilde{U}_q^{\Delta\rho}(\vec{r})`$ and use it during the time-propagation.
As the filter function, we use Fermi-Dirac function:
```math
FD(e_k,\mu, T)=\frac{1}{\exp[\frac{e_k-\mu}{T}]+1}
```
# Testing script
You can use the attached script [tools/high-frequency-filter.py](https://gitlab.fizyka.pw.edu.pl/wtools/w-bsk/-/blob/devel/tools/high-frequency-filter.py) to test the impact of the filtering scheme on the input signal. Below is an example output of the script.
![high-frequency-filter](https://gitlab.fizyka.pw.edu.pl/wtools/wbsk/-/tree/public/tools/high-frequency-filter.png)
# Controlling the filter
The filter can be controlled via input file:
```bash
# ------------- HIGH K-WAVES FILTER ---------------
# See: W-BSK Wiki -> Stabilization of the time-dependent code
hkf_mu 0.9 # mu parameter of the Fermi-Dirac (filtering) function, in Ec units, default=9.99 (disabled)
hkf_T 0.01 # T parameter of the Fermi-Dirac (filtering) function, in Ec units, default=0.01
```
# Benchmark
Below we demonstrate energy conservation quality for the evolution of a nuclei $`Z=40`$ immersed in superfluid see of neutron (background density $`n=0.0086\,\text{fm}^{-3}`$) for various filters.
![td-filtering](https://gitlab.fizyka.pw.edu.pl/wtools/wbsk/-/tree/public/tex/hkf/td-filtering.png)
\ No newline at end of file
Clone repository
  • Nuclear EDF
  • Stabilization of the time dependent code
  • Home