Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Processing of wave functions

Last edited by Gabriel Wlazłowski Mar 18, 2022
Page history

Processing of wave functions

  • Processing of wave-functions generate by st-wslda-1d code
  • Processing of wave-functions generate by st-wslda-2d code

Folder extensions/post-processing-wf contains templates of scripts for processing of the results

Processing of wave-functions generate by st-wslda-1d code

When processing wave-functions you need to remember that full form of the quasi-particle orbital is:

\begin{pmatrix}
u_n(x,y,z)\\
v_n(x,y,z)
\end{pmatrix}=
\begin{pmatrix}
u_{n,k_y,k_z}(x)\\
v_{n,k_y,k_z}(x)
\end{pmatrix}\dfrac{1}{\sqrt{L_y}}e^{ik_y y}\dfrac{1}{\sqrt{L_z}}e^{ik_z z}

Moreover, you need to normalize the wave-functions by yourself.

Explore these files to learn more:

  • see: st-processwf-1d-template.c for the template.

Processing of wave-functions generate by st-wslda-2d code

When processing wave-functions you need to remember that full form of the quasi-particle orbital is:

\begin{pmatrix}
u_n(x,y,z)\\
v_n(x,y,z)
\end{pmatrix}=
\begin{pmatrix}
u_{n,k_z}(x,y)\\
v_{n,k_z}(x,y)
\end{pmatrix}\dfrac{1}{\sqrt{L_z}}e^{ik_z z}

Moreover, you need to normalize the wave-functions by yourself.

Explore these files to learn more:

  • see: st-processwf-2d-template.c for the template.
  • see: st-Lz-quantum-numbers-2d.c for an example demonstrating of extraction of an expectation value of the angular momentum operator for each quasi-particle state.
Clone repository

Content of Documentation
Official webpage
W-BSK Toolkit