Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • wslda wslda
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • wtools
  • wsldawslda
  • Wiki
  • Physical quantities

Last edited by Gabriel Wlazłowski Sep 02, 2022
Page history

Physical quantities

  • Energy
  • Densities
  • Potentials

Energy

Energy is computed from the formula:

E=\int \mathcal{E}_{\textrm{edf}}(n,\nu,\ldots)\,d^3r+\sum_{\sigma}\int V_{\sigma}^{\textrm{(ext)}}(r)n_{\sigma}(r)\,d^3r\\-\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r-\sum_{\sigma}\int \vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r

The intrinsic energy is assumed to have a generic structure:

E_{\textrm{edf}} = \int \mathcal{E}_{\textrm{edf}}\,d^3r = \int\left(\mathcal{E}_{\textrm{kin}} + \mathcal{E}_{\textrm{pot}} + \mathcal{E}_{\textrm{pair}} + \mathcal{E}_{\textrm{curr}}\right)d^3r

where:

  • E_kin:
E_{\textrm{kin}} = \int\mathcal{E}_{\textrm{kin}}\,d^3r = \int \sum_{\sigma=\{\uparrow,\downarrow\}}\frac{\alpha_{\sigma}}{2}\left(\tau_{\sigma}-\frac{\vec{j}_{\sigma}^2}{n_{\sigma}}\right)d^3r
  • E_pot:
E_{\textrm{pot}} = \int\mathcal{E}_{\textrm{pot}}\,d^3r =\int D(n_{\uparrow},n_{\downarrow}, \nu, \ldots)\,d^3r
  • E_pair:
E_{\textrm{pair}} = \int\mathcal{E}_{\textrm{pair}}\,d^3r =\int g(n_{\uparrow},n_{\downarrow})\nu^{\dagger}\nu\,d^3r
  • E_curr:
E_{\textrm{curr}} = \int\mathcal{E}_{\textrm{curr}}\,d^3r =\int \sum_{\sigma=\{\uparrow,\downarrow\}}\frac{\vec{j}_{\sigma}^2}{2n_{\sigma}}\,d^3r

Contributions to energies from the external potentials are:

  • E_potext:
E_{\textrm{pot.ext}} = \int \sum_{\sigma=\{\uparrow,\downarrow\}} V_{\sigma}^{\textrm{(ext)}}(r)n_{\sigma}(r)\,d^3r
  • E_pairext:
E_{\textrm{pair.ext}} = -\frac{1}{2}\int\left(\Delta^{\textrm{(ext)}}(r)\nu^*(r)+\textrm{h.c.}\right)d^3r
  • E_velext:
E_{\textrm{vel.ext}} = -\int \sum_{\sigma=\{\uparrow,\downarrow\}}\vec{v}_{\sigma}^{\textrm{(ext)}}(r)\cdot\vec{j}_{\sigma}(r)\,d^3r

The total energy E_tot is computed as the sum of all these contributions.

Densities

Densities are computed according to formulas:

  • nu:
    \nu(r) = \frac{1}{2}\sum_{|E_n|<E_c} u_{n,\uparrow}(r)v_{n,\downarrow}^{*}(r)( f_{\beta}(-E_n)-f_{\beta}(E_n) )
  • rho_a:
    n_{\uparrow}(r)= \sum_{|E_n|<E_c}|u_{n,\uparrow}(r)|^2 f_{\beta}(E_n)
  • rho_b:
    n_{\downarrow}(r) = \sum_{|E_n|<E_c}|v_{n,\downarrow}(r)|^2 f_{\beta}(-E_n)
  • tau_a:
    \tau_{\uparrow}(r) = \sum_{|E_n|<E_c}|\nabla u_{n,\uparrow}(r)|^2 f_{\beta}(E_n)
  • tau_b:
    \tau_{\downarrow}(r) = \sum_{|E_n|<E_c}|\nabla v_{n,\downarrow}(r)|^2 f_{\beta}(-E_n)
  • j_a_x, j_a_y, j_a_z:
    \vec{j}_{\uparrow}(r) = -\sum_{|E_n|<E_c} \textrm{Im}[u_{n,\uparrow}(r)\nabla u_{n,\uparrow}^*(r)]f_{\beta}(E_n)
  • j_b_x, j_b_y, j_b_z:
    \vec{j}_{\downarrow}(r) = \sum_{|E_n|<E_c} \textrm{Im}[v_{n,\downarrow}(r)\nabla v_{n,\downarrow}^*(r)]f_{\beta}(-E_n)

In these formulas E_{n} denotes quasi-particle energy, and E_c is the energy cut-off scale. Fermi distribution function f_{\beta}(E)=1/(\exp(\beta E)+1) is introduced to model temperature T=1/\beta effects.

Densities are accessible to users through structure wslda_density:

typedef struct
{
    int nx;             
    int ny;             /// for 1d code it is set to 1
    int nz;             /// for 1d and 2d code it is set to 1
    int datadim;        /// dimensionality of data
    int blocklength;    /// number of elements in potential array = nx*ny*nz
    
    // densities
    double complex *nu;
    double *rho_a;
    double *rho_b;
    double *tau_a;
    double *tau_b;
    double *j_a_x;
    double *j_a_y;
    double *j_a_z;
    double *j_b_x;
    double *j_b_y;
    double *j_b_z;  
} wslda_density; 

Potentials

Minimization of the functional with respect to quasiparticle orbitals provides Bogoliubov-de Gennes type equations. Its general form is:

\begin{pmatrix}h_{\uparrow}(r)  &  \Delta(r)+ \Delta_{\textrm{ext}}(r) \\\Delta^*(r)+ \Delta^*_{\textrm{ext}}(r) &  -h^*_{\downarrow}(r)\end{pmatrix} \begin{pmatrix}u_{n\uparrow}(r) \\ v_{n\downarrow}(r)\end{pmatrix}= E_n\begin{pmatrix}u_{n\uparrow}(r) \\ v_{n\downarrow}(r)\end{pmatrix}

where single particle hamiltonian is given by

h_{\sigma} = -\dfrac{1}{2}\vec{\nabla}\alpha_{\sigma}(r)\vec{\nabla} + V_{\sigma}(r)-\left(\mu_{\sigma}-V_{\sigma}^{\textrm{(ext)}}(r)\right)-\dfrac{i}{2}\left\lbrace \vec{A}_{\sigma}(r)-\vec{v}_{\sigma}^{\textrm{(ext)}}(r),\vec{\nabla} \right\rbrace

Potentials entering the hamiltonian are:

  • alpha_a and alpha_b:
    \alpha_{\sigma} = 2\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta \tau_{\sigma}} -- effective mass,
  • V_a and V_b:
    V_{\sigma}=\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta n_{\sigma}} -- mean-field potential,
  • A_a_x, A_a_y, A_a_z, A_b_x, A_b_z, and A_b_z:
    \vec{A}_{\sigma}=\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta \vec{j}_{\sigma}} -- current potential,
  • delta:
    \Delta(r)=-\dfrac{\delta\mathcal{E}_{\textrm{edf}}}{\delta \nu^*} -- paring potential.

Potentials are accessible for user through structure wslda_potential:

typedef struct
{
    int nx;             
    int ny;             /// for 1d code it is set to 1
    int nz;             /// for 1d and 2d code it is set to 1
    int datadim;        /// dimensionality of data
    int blocklength;    /// number of elements in potential array = nx*ny*nz
    
    // potentials
    double complex *delta;
    double *alpha_a; /// effective mass, spin-a
    double *alpha_b; /// effective mass, spin-b
    double *V_a;
    double *V_b;
    double *A_a_x;
    double *A_a_y;
    double *A_a_z;
    double *A_b_x;
    double *A_b_y;
    double *A_b_z;
} wslda_potential; 
Clone repository

Content of Documentation
Official webpage
W-BSK Toolkit