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Abstract

Basic relations used for computation of various densities.

1 General case

HFB problem in general case is given by:

hip Ry 0 A Unt Uns

hiT hu{ -A 0 Un | —E um (1)
0 —A% —hiy —h3 ) | v "o

A0 by k) \ow Uny

and corresponding densities are constructed as follow:
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where subscripts o = {1, ]} indicate spin, E,, denotes quasi-particle energy and
E. is energy cut-off scale. Fermi distribution function f3(E) = 1/(exp(BE)+1)
is introduced to model temperature kT = 1/3 effects. In zero temperature
limit 7' = 0 Fermi distribution function reduces to fg(E) = 0(—E), where 0(x)
is Heaviside step function. Note also that fg(E) =1 — fz(—E).

Relation 1: If vector ¢4 = (Unt, Uny, Unts vm)T is solution of Eq. (1) with eigen-
value E,,, then also vector p_ = (U:T’ Vg s Uy Uy, i)T is solution with eigenvalue
—-E,.

Conclusion 1: It is sufficient to extract only solutions for positive eigenvalues
E,.



2 Case where Iy = hjy =0

If hyy = hyy = 0 (typically it corresponds to no spin-orbit case) then Eq. (1)
decouples into two sets of equations:
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Relation 2: If vector ¢ = (unq, UM)T is solution of Eq. (6) with eigenvalue E,,
then vector ¢ = (v}, up )" is solution of Eq. (7) with eigenvalue —E,,.

Conclusion 2: Having solutions of Eq. (6) one can construct solutions of Eq. (7)
by using transformation: u, + — fuj‘m, Up,| — “;,¢ and F,, —» —F,,.
In practice we solve only Eq. (6) and we express all densities via {u,q, v }:
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3 Case where iy =hy = h

If hyy = hyy = h (typically it corresponds to the spin-balanced case) then Eq. (6)
takes form, as typically cited in papers (spin indices are dropped):
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Relation 3: If vector ¢, = (u,v)" is solution of Eq. (16) with eigenvalue E,,
then vector ¢ = (v}, —u})T is also solution with eigenvalue —E,,.



Conclusion 3: Having solutions of Eq. (16) for positive energies E,, one can
construct all solutions of this equation.

In practice for spin-balanced case we solve Eq. (16) for positive E,, and we
express all densities via these states:
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+ fo(=En) In fg(=En)). (21)



